Combined RCD/MCB Devices FL9, 2-pole : Technical data sheet

Description

- Combined RCD/MCB Devices
- Line voltage-independent tripping
- Compatible with standard busbar

- Twin-purpose terminal (lift/open-mouthed) above and below
- Busbar positioning optionally above or below
- Free terminal space despite installed busbar
- Guide for secure terminal connection
- Type -A: Protects against special forms of residual pulsating DC which have have not been smoothed
- 3-position DIN rail clip, permits removal from existing busbar system
- Tripping characteristic C
- Rated breaking capacity 10 kA
- Switching toggle (MCB component) in colour designating the rated current
- Contact position indicator red - green
- Fault current tripping indicator white - blue
- The test key " $T$ " must be pressed every 6 month. The system operator must be informed of this obligation and his responsibility in a way that can be proven (self-adhesive RCD-label enclosed). The test intervall of 6 month is valid for residential and similar applications. Under all other conditions (e.g. damply or dusty environments), it's recommended to test in shorter intervalls (e.g. monthly).
- Pressing the test key " T " serves the only purpose of function testing the residual current device (RCD). This test does not make earthing resistance measurement $\left(\mathrm{R}_{\mathrm{E}}\right)$, or proper checking of the earth conductor condition redundant, which must be performed separately.

| $I_{n} / I_{\Delta n}(A)$ |  | Article | Units per package |
| :--- | :--- | :--- | :--- |
| $6 / 0.03$ | 195606 | FL962C003A | $1 / 60$ |
| $6 / 0.3$ | 195611 | FL962C03A | $1 / 60$ |
| $10 / 0.03$ | 195607 | FL9102C003A | $1 / 60$ |
| $10 / 0.1$ | 195608 | FL9102C01A | $1 / 60$ |
| $10 / 0.3$ | 195612 | FL9102C03A | $1 / 60$ |
| $16 / 0.03$ | 193755 | FL9162C003A | $1 / 60$ |
| $16 / 0.1$ | 195609 | FL9162C01A | $1 / 60$ |
| $16 / 0.3$ | 195613 | FL9162C03A | $1 / 60$ |
| $20 / 0.03$ | 193756 | FL9202C003A | $1 / 60$ |
| $20 / 0.1$ | 195610 | FL9202C01A | $1 / 60$ |
| $20 / 0.3$ | 195614 | FL9202C03A | $1 / 60$ |


| Accessories: |  |
| :--- | :--- |
| Tripping signal switch for subsequent installation | ZP9IHK |
| Shunt trip release 230V | ZP9ASAZ30 |

## Combined RCD/MCB Devices FL9, 2-pole

Technical data


Mechanical

| Frame size | 45 mm |
| :--- | :--- |
| Device height | 80 mm |
| Device width | 35 mm (2MU) |
| Mounting | 3 -position DIN rail clip, permits removal from existing busbar system |
| Degree of protection, switch | PP20 |
| Degree of protection, built-in | IP40 |
| Upper and lower terminals | open mouthed/lift terminals |
| Terminal protection | finger and hand touch safe, DGUV VS3, EN 50274 |
| Terminal capacity | $1-25 \mathrm{~mm}{ }^{2}$ |
| Terminal torque | $2-2.4 \mathrm{Nm}$ |
| Busbar thickness | $0.8-2 \mathrm{~mm}$ |
| Tripping temperature | $-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ |
| Storage- and transport temperature | $-35^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ |
| Resistance to climatic conditions | according to IEC/EN 61009 |

Influence of ambient temperature on load carrying capacity

- Values = max. allowed current in Ampere at the specific temperature
- Temperature factor $(\% / K)=0.5$

Ambient temperature $/{ }^{\circ} \mathrm{C}$

| $\mathrm{I}_{\mathrm{n}}[\mathrm{A}]$ | -40 | -30 | -25 | -20 | -10 | 0 | 10 | 20 | 30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 8.1 | 7.8 | 7.7 | 7.5 | 7.2 | 6.9 | 6.6 | 6.3 | 6.0 |
| 10 | 13.5 | 13.0 | 12.8 | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 |
| 16 | 21.6 | 20.8 | 20.4 | 20.0 | 19.2 | 18.4 | 17.6 | 16.8 | 16.0 |
| 20 | 27.0 | 26.0 | 25.5 | 25.0 | 24.0 | 23.0 | 22.0 | 21.0 | 20.0 |

Connection diagram

## 2-pole <br> 

Dimensions (mm)


# Combined RCD/MCB Devices FL9, 2-pole 

Short Circuit Selectivity FL9 towards Neozed¹) / Diazed²) / NHOO³)
Short circuit currents in kA, rated currents of fuses in $A$

Short circuit selectivity FL9 towards Neozed ${ }^{1)}$

| FL9 | Neozed $^{1)}$ |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{I}_{\mathrm{n}}[\mathrm{A}]$ | 16 | 20 | 25 | 32 | 35 | 40 | 50 | 63 | 80 | 100 |
| C 10 | $<0.5$ | 0.5 | 0.8 | 1.7 | 1.9 | 3 | 6.1 | 10 | 10 | 10 |
| C 16 |  | $<0.5$ | 0.7 | 1.3 | 1.5 | 2.2 | 4 | 6.2 | 10 | 10 |
| C 20 |  |  | 0.6 | 1.3 | 1.4 | 2.1 | 3.7 | 5.6 | 8.5 | 10 |

Short circuit selectivity FL9 towards Diazed ²)

| FL9 | Diazed $^{2)}$ |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{I}_{\mathrm{n}}[\mathrm{A}]$ | 16 | 20 | 25 | 32 | 35 | 50 | 63 | 80 | 100 |
| C 10 | $<0.5$ | 0.5 | 0.8 | 1.5 | 2.4 | 4.4 | 10 | 10 | 10 |
| C 16 |  | $<0.5$ | 0.7 | 1.2 | 1.9 | 3.2 | 7.6 | 10 | 10 |
| C 20 |  |  | 0.7 | 1.2 | 1.8 | 2.9 | 6.5 | 9.7 | 10 |

Short circuit selectivity FL9 towards NHOO ${ }^{3)}$

| $\mathrm{FL9}$ | $\mathrm{NHOO}^{3)}$ |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{I}_{\mathrm{n}}[\mathrm{A}]$ | 16 | 20 | 25 | 32 | 35 | 40 | 50 | 63 | 80 | 100 | 125 | 160 |
| C 10 | $<0.5$ | $<0.5$ | 0.7 | 1.3 | 1.9 | 2.7 | 4.5 | 6.9 | 10 | 10 | 10 | 10 |
| C 16 |  | $<0.5$ | 0.6 | 1 | 1.5 | 2 | 3.1 | 4.4 | 7.5 | 10 | 10 | 10 |
| C 20 |  |  | 0.6 | 0.9 | 1.4 | 1.9 | 2.9 | 4.1 | 6.5 | 10 | 10 | 10 |

## Darker areas: no selectivity

1) SIEMENS Type 5SE2; Size: D01, D02, D03; Operating class gG; Rated voltage: AC 400 V/DC 250 V
${ }^{2)}$ SIEMENS Type 5SB2, 5SB4, 5SC2; Size: DII, DIII, DIV; Operating class gG; Rated voltage: AC 500 V/DC 500 V
${ }^{3)}$ SIEMENS Type 3NA3 8, 3NA6 8, 3NA7 8; Size: 000, 00; Operating class gG; Rated voltage: AC 500 V/DC 250 V

Tripping Characteristic FL9, Characteristic C


Let-through Energy FL9, Characteristic C, 2-pole


